Commercial NiMH Cells in LEO Cycling

Thermal Vacuum Life Test Performed for the Floating Potential Probe (FPP)

By

Eric Darcy, NASA-Johnson Space Center Brad Strangways, Symmetry Resources, Inc.

For

2002 NASA Aerospace Battery Workshop

Outline

Introduction

- What is the (Floating Potential Probe) FPP?
- Why was a NiMH battery selected?
- How well would crimped seal cells performed in long term vacuum exposure?

Verification Tests

- Battery description
- Test Methods
- Results
- Main Findings
- FPP Status

Introduction

Purpose of FPP

- Determine the bonding
 effectiveness of the Plasma
 Contacting Unit (PCU) to
 mitigated large electrical fields
 that could induce a hazardous
 plasma environment for EVAs
 (spacewalks) on the
 international Space Station
 (ISS)
- Essentially, it is a fancy voltmeter powered by solar arrays and a 12V battery

Floating Potential Probe

Introduction (cont.)

Selected Battery

- Schedule pressure precluded any battery development
- EVA Helmet Interchangeable
 Portable (EHIP) light battery
 was best match
- 3P-5S array of 4/3A NiMH cells (3.5Ah nameplate) from Toshiba and Sanyo
- Using only two 5S strings in series to get 12V output, leaving the middle string unused

EVA Helmet Interchangeable Portable (EHIP)
Battery Brick Assembly
SEG39130224

Introduction (cont.)

Problem

- FPP needed a battery with 2year LEO cycle
- That's >17,520 hours of vacuum exposure
- EHIP light battery was certified for 260 spacewalks (or 1820 hours of vacuum) over 5 years
- Would the crimp seal be compatible with vacuum LEO cycling?
- Seal must hold hydrogen partial pressure and some water vapor pressure

Verification Test Program

- Performed by Symmetry Resources, Inc., in Arab, AL
- Cell Acceptance
 - Cells were spares from EHIP flight lots that had passed all acceptance tests
 - Pre-Test 2 charge/discharge cycles for capacity and resistance measurements, phenolphthalein leak test, and weighing
- Test Battery Assembly
 - 2 prototype EHIP light battery bricks assembled
 - In each battery, one string of Toshiba and one string of Sanyo
 - Bricks insulated in Durrette felt

Test Method

- Battery Assembly
 - No EHIP battery housing available
 - Test bricks were modified to include copper tape to encapsulate the felt and provide better thermal conduction after 66 cycles
 - Same configuration for both batteries
 - One thermocouple and one voltage sense per string

Test Method (cont.)

- Batt#1 in a thermal chamber set at 32°C
- Batt#2 in a thermal vacuum chamber set at 32°C, < 0.5 torr
- Each string controlled independently w/ a Maccor system
 - Discharge: 2.125W for 30 min
 - 60 min Charge: stepwise simulation of FPP charge algorithm
 - 1.75A start with reductions based on OCV and temperature
 - Taper from 1.75A at 6.5V to 0.58A at 6.8V then to 0.04A at 7.2V
 - Taper from 1.75A at 38°C to 0A at 45°C

Cycle 2 Capacity Baseline

Initial Thermal Profile: Getting too hot!

Test Method (cont.)

- First 66 cycles results
 - Batteries operating temperature drifted to > 40 °C
- Modifications to better simulate actual FPP
 - Changed initial temperature setting from 32 to 30°C
 - Add a delay followed by a gradual current increase at beginning of charge
 - Made adjustments to voltage based current limits to compensate for increased wire resistance present in actual FPP
- Modifications to the test article
 - Removed the Durette felt on the cylindrical side of the cells
 - Encapsulated the felt with copper tape

After the Modifications

End of Discharge Voltage Trend

Test Results

Test Results (cont.)

Test Results after 10 months

- Capacity and internal resistance degradation occurred
 - Sanyo
 - 85% increase in internal resistance
 - 9% loss in capacity
 - Toshiba
 - 75% increase in internal resistance
 - 2% loss in capacity
- Very little difference between vacuum & ambient P
 - Post test mass loss are very low
 - Sanyo: <23 mg/cell (Vac) vs < 22 mg (1 atm)
 - Toshiba: <14 mg/cell (Vac) vs < 6 mg (1 atm)
 - Capacity and resistance changes are independent of pressure
 - Losses and increases were due to the aggressive charge and warm conditions

FPP Status

- FPP was launch in Dec 2000
- It work for some months, then LOS occurred
- About several months later, its communication was reestablished
 - It provided excellent data
 - the PCU is doing its job
 - the electrical fields are less of a concern than anticipated
- A later, we lost signal again
- Funding was discontinued after 10 months of testing because program decided to no longer attempt to talk to it
- FPP is still up there and it may be brought back on a summer 2003 mission